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Abstract— This paper reports a novel stable adaptive attitude
estimator and preliminary simulation results of a true-North gy-
rocompass system employing the attitude adaptive identifier and
a commercially available low-cost inertial measurement unit
(IMU) comprising a 3-axis fiber optic gyroscope (FOG) with a 3-
axis micro-electro-mechanical systems (MEMS) accelerometer.
Optical North-seeking gyrocompass systems typically employ a
microprocessor system to sample the low-level raw sensor values
for angular-rate and linear-acceleration at a high sampling rate
and estimate true-North heading, pitch, and roll. This paper
reports the first adaptive attitude estimator on SO(3) which
utilizes 3-axis angular-rate sensor data and 3-axis linear accel-
eration sensor data to estimate the instrument’s 3-degrees of
freedom (DOF) attitude (roll, pitch, and heading) without using
magnetometry of the Earth’s magnetic field. A stability proof
and preliminary numerical simulation results are reported.
The simulation results for a rotating IMU configuration are
promising, and further experimental evaluation and extension
of the algorithm for the case of a translating IMU configuration
typically found on moving robotic vehicles are needed.

I. INTRODUCTION

Accurate true-North heading and attitude measurement is a
critical component of high-accuracy navigation systems for
a wide variety of robotic vehicles. The need for accurate
true-North heading and attitude estimation is particularly
acute in the case of vehicles operating in global positioning
system (GPS)-denied environments (such as underwater) and
in magnetically compromised environments (such as near
ferromagnetic structures, buildings, or natural local magnetic
anomalies). Smaller and lower-cost vehicles represent an
additional challenge due to their limited sensor budget, small
physical size, and limited energy storage capacity.

Over the past decade, for example, the development of
a new generation of small low-cost underwater vehicles
(UVs) has begun to enable oceanographic, environmental
assessment, and national security missions that were con-
sidered impractical or infeasible before (e.g. [2], [3], [11],
[14], [17]). This new generation of UVs often employ
low-cost navigation systems that presently limit them to
missions requiring only low-precision navigation of O(10-
100)m accuracy. High-end navigation approaches, of O(0.1-
10)m accuracy, traditionally require a Doppler sonar, costing
$20k-$50k, and a North-seeking gyrocompass or inertial
navigation system (INS), costing $50k-$250k. These high-
end navigation approaches are largely incompatible with low-
cost autonomous underwater vehicles (AUVs) with target
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total vehicle cost of $50k-$250k.
Small low-cost UVs typically employ micro-electro-

mechanical systems (MEMS) inertial measurement units
(IMUs) comprised of 3-axis MEMS magnetometers and
3-axis MEMS accelerometers to estimate local magnetic
heading, pitch, and roll to within several degrees of accuracy.
Studies have shown that the accuracy of these magnetic
heading sensors can be a principal error source in overall
navigation solutions [6].

These low-accuracy attitude sensors limit the navigation
accuracy of small underwater vehicles. The high cost, large
size, and high power-consumption of optical true-North seek-
ing gyrocompasses is a principal barrier to the widespread
use of high accuracy navigation for smaller and lower-cost
UVs.

Recently, a new class of low-cost fiber optic gyroscope
(FOG) IMUs have become available — for example the
commercial-off-the-shelf (COTS) KVH 1775 IMU (KVH In-
dustries, Inc., Middletown, RI, USA) — that provide sensor
accuracies sufficient for estimation of true-North heading,
pitch and roll. Recent work by Costanzi et al. has developed
an attitude estimation algorithm under unknown magnetic
disturbances utilizing a low-cost FOG [4]. [4] differs from
this paper as it estimates magnetic north while this paper
presents an estimator for true-North heading.

A previously published study by the authors reports the
results of a preliminary experimental evaluation of a static
(non-rotating) configuration of a low-cost IMU, suggesting
their possible practical utility as the primary sensor in a
North-seeking gyrocompass system [13].

The present paper reports a new stable algorithm for
estimating attitude of a dynamic (rotating) IMU along with
preliminary simulation results of the identifier employing a
low-cost FOG IMU as the primary sensor.

This paper is organized as follows: Section II gives an
overview of preliminaries. Section III reports the novel
attitude adaptive identifier. Section IV presents numerical
simulations. Section V summarizes and concludes.

II. PRELIMINARIES

A. Coordinate Frames

We define the following coordinate frames:

Instrument Frame: A frame (i) fixed in the IMU instru-
ment.

Zero Frame: The zero frame (z) is the instrument frame
at t0.



North-East-Down (NED) Frame: The North-East-Down
(NED) frame (N ) has its x-axis pointing North, its y-
axis pointing East, its z-axis pointing down, and its
origin co-located with that of the instrument frame.

B. Notation and Definitions

For each vector, a leading superscript indicates the frame
of reference and a following subscript indicates the signal
source, thus Nwm is the measured instrument angular veloc-
ity in the NED frame and iam is the measured instrument
linear acceleration in the instrument sensor frame.

Definition: The set of 3×3 rotation matrices forms a group,
known as the special orthogonal group, SO(3), defined as

SO(3) = {R : R ∈ R3×3, RTR = I3×3,det(R) = 1}. (1)

For each rotation matrix a leading superscript and sub-
script indicates the frames of reference. For example, N

i R is
the rotation from the instrument frame to the NED frame.

The elements of a rotation matrix R ∈ SO(3) are defined
with following subscripts,

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 . (2)

Definition: The set of 3×3 skew-symmetric matrices is
defined as

so(3) = {S : S ∈ R3×3, ST = −S}. (3)

Definition: J is defined as a function that maps a 3 × 1
vector to the corresponding 3 × 3 skew-symmetric matrix,
J : R3 → so(3). For k ∈ R3

J(k) =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 (4)

We define its inverse J−1 : so(3)→ R3, such that ∀x ∈ R3,
J−1(J(x)) = x.

C. Sensor Model

The sensor data is modeled as
iwm(t) = iwE(t) + iwv(t) + iwb + iηw(t) (5)
iam(t) = iag(t) + iav(t) + iab + iηa(t) (6)
iwe(t) = iwE(t) + iwv(t) + iwb (7)
iae(t) = iag(t) + iav(t) + iab (8)

where iwm(t) is the IMU measured angular-rate, iwe(t) is
the expected angular-rate, iwE(t) is the true angular velocity
due to the rotation of the Earth, iwv(t) is the true angular
velocity due to the rotation of the instrument with respect
to the NED frame, iwb is the angular velocity sensor bias
offset, iηw(t) is the zero-mean Gaussian angular velocity
sensor noise, iam(t) is the IMU measured linear acceleration,
iae(t) is the expected linear acceleration, iag(t) is the true
linear acceleration due to gravity and the Earth’s rotation,
iav(t) is the instrument’s true linear acceleration with respect
to Earth, iab is the linear accelerometer sensor bias, and

iηa(t) is the zero-mean Gaussian linear accelerometer sensor
noise. Angular velocity sensor and linear accelerometer
sensor noises are computed from the IMU manufacturer’s
specifications [9], as per [16], and confirmed experimentally
(σw = 6.32× 10−3 rad/s, σa = 0.0037 g).

Accurate on-line sensor bias compensation is important to
the accuracy of the proposed algorithm, but is beyond the
scope of the present conference paper. Troni and Whitcomb
present an adaptive estimator for determining 3-axes mag-
netometer and 3-axes linear accelerometer biases in [15].
However, stable simultaneous on-line sensor bias compen-
sation for accelerometers and angular rate gyros remains a
non-trivial problem and is the subject of a separate paper
presently in preparation. Thus, for the numerical simulation
results reported herein, we assume that the bias offset has
been accurately estimated and compensated. In addition, we
assume that the instrument is only rotating with respect to
the NED frame (iav(t) = 0). With these assumptions, the
sensor data model simplifies to

iwm(t) = iwE(t) + iwv(t) + iηw(t) (9)
iam(t) = iag(t) + iηa(t) (10)
iwe(t) = iwE(t) + iwv(t) (11)
iae(t) = iag(t). (12)

D. Mathematical Background

Proposition: For Q(t) ∈ so(3), the rotation matrix R(t)
can be computed by Rodrigues’ Equation [10]

R(Q(t)) = I3×3 + γ(t)Q(t) + κ(t)Q(t)2 (13)

where

q(t) = J−1(Q(t)) (14)

γ(t) =
sin(‖q(t)‖)
‖q(t)‖

(15)

κ(t) =
1− cos(‖q(t)‖)
‖q(t)‖2

. (16)

Proposition: q̇(t) is related to Ṙ(t) by the mapping

RT (t)Ṙ(t) = J(A(q(t))q̇(t)) (17)

where A(q(t)) is the right Jacobian of R(q(t)) = eJ(q(t))

with respect to the angular position vector q(t) ∈ R3. A(q(t))
and its inverse,

A−1(q(t)) = I3×3 + α(t)J(q(t)) + β(t)J(q(t))2 (18)

where

α(t) = −1

2
, (19)

β(t) =
1

‖q(t)‖
− 1 + cos(‖q(t)‖)

2‖q(t)‖ sin(‖q(t)‖)
, (20)

are reported by Park in [12].
If A(q(t)) is invertible, (17) can be rearranged as

q̇(t) = A−1 (q(t)) J−1
(
RT (t)Ṙ(t)

)
(21)



and thus

Q̇(t) = J
(
A−1 (q(t)) J−1

(
RT (t)Ṙ(t)

))
. (22)

Proposition: ∀y(t) ∈ R3 and Q(t) = J(q(t)) the follow-
ing equality holds [8], [7]:

−1

2
Tr
(
J
(
A−1(q(t))y(t)

)
Q(t)

)
= qT (t)y(t). (23)

Proposition: The time derivative of gravity vector in the
instrument frame can be computed by

iȧg(t) = −J(iwv(t))iag(t). (24)

Proof: Start with the relation between Nag and iag(t)

Nag = N
i R(t)iag(t). (25)

Taking the time derivative of (25) and rearranging terms
results in

0 = N
i R(t)J(iwv(t))iag(t) + N

i R(t)iȧg(t)
iȧg(t) = −J(iwv(t))iag(t). (26)

Proposition: The east vector can be computed by

iee(t) = J(iwe(t))
iag(t) + iȧg(t). (27)

Proof: Start with the fact that

iee(t) = iwE(t)× iag(t)

= J(iwE(t))iag(t). (28)

substituting (11) into (28) results in

iee(t) = J(iwe(t))
iag(t)− J(iwv(t))iag(t). (29)

Then substituting (24) into (29) results in

iee(t) = J(iwe(t))
iag(t) + iȧg(t). (30)

III. A NOVEL ATTITUDE ADAPTIVE IDENTIFIER

This section reports a novel attitude adaptive identifier
(roll, pitch, heading) based upon the adaptive identifier on
SO(3) reported by Kinsey and Whitcomb in [8], [7]. An
additional error term has been developed to enable heading
estimation.

A. Identifier Derivation

1) Plant: Define Nae(t) and Nee(t) to be

Nae(t) = N
i R(t)iae(t)

= N
z R

z
iR(t)iae(t) (31)

Nee(t) = N
i R(t)iee(t)

= N
z R

z
iR(t)iee(t). (32)

We consider the plant

Nae(t) + Nee(t) = N
i R(t)

(
iae(t) + iee(t)

)
(33)

By separating N
i R(t) into the two rotations N

z R and z
iR(t),

the plant can be rewritten as
Nae(t) + Nee(t) = N

z R (zae(t) + zee(t)) (34)

where Nae(t) and Nee(t) are deterministic, iae(t) is the
gravity vector, zae(t) = z

iR(t)iae(t), zee(t) = z
iR(t)iee(t),

z
iR(t) is computed by

z
iR(t) =

∫ t

t0

z
iR(τ)J

(
iwi(τ)

)
dτ, z

iR(t0) = I3×3, (35)

and iee(t) is computed by (27).
2) Identification Plant: Define N

z R̂(t) ∈ SO(3) to be the
estimate of N

z R, and N âe(t) and N êe(t) to be
N âe(t) = N

z R̂
zae(t) (36)

N êe(t) = N
z R̂

zee(t). (37)

The estimated plant output then is
N âe(t) + N êe(t) = N

z R̂(t) (zae(t) + zee(t)) . (38)

3) Parameter Error: The parameter error is defined as

R̃(t) = N
z R

TN
z R̂(t). (39)

Since N
z R is constant,

˙̃R(t) = N
z R

TN
z

˙̂
R(t). (40)

4) Output Error: The local level and heading output error
terms are defined, respectively, as

ã(t) = ka
N
z R̂

T (t)
(
N âe(t)× Na

)
(41)

ẽ(t) = kw
N
z R̂

T (t)N āN āT
(
N êe(t)× Ne

)
(42)

where

Na =

(
I3×3 +

1

g0
J(NwE)2

)[
0 0 −1

]T
, (43)

N ā =
Na

‖Na‖
, (44)

Ne = NwE × Na, (45)

g0 is the magnitude of the gravity vector, and ka > 0 and
kw > 0 are constants. Note that N âe(t) × Na = 0 and
N êe(t)×Ne = 0 when the estimated and actual plant outputs
are aligned. The output error can be represented as skew-
symmetric matrices where the terms are defined as

Ã(t) = J(ã(t)), (46)
Ẽ(t) = J(ẽ(t)). (47)

5) Update Law: We choose the update law

N
z

˙̂
R(t) = N

z R̂(t)
(
Ã(t) + Ẽ(t)

)
. (48)

6) System: The resulting system from substituting (48)
into (40) is

˙̃R(t) = N
z R

T N
z

˙̂
R(t)

= N
z R

T N
z R̂(t)

(
Ã(t) + Ẽ(t)

)
= R̃(t)

(
Ã(t) + Ẽ(t)

)
. (49)
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Fig. 1. Simulation attitude estimates.
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Fig. 2. Simulation attitude estimates’ error.

7) Stability: The Lyapunov candidate function is [1]

V (R̃(t)) = ‖R̃(t)‖2SO(3)

= −1

2
Tr(Q̃(t)Q̃(t))

= ‖q̃(t)‖2 (50)

where Q̃(t) = ln(R̃(t)) and q̃(t) = J−1(Q̃(t)).
V : SO(3)→ R1 is a smooth function in the neighborhood
of the identity rotation I3×3, V (I3×3) = 0, and V (R) > 0
if R 6= I3×3 in the neighborhood of I3×3 [1].

Taking the time derivative and substituting in (22) and (49)
yields [1], [5]

V̇ (R̃(t)) = −Tr( ˙̃Q(t)Q̃(t))

= −Tr
(
J(A−1(q̃(t))(ũ(t)))Q̃(t)

)
. (51)

where

ũ(t) = ã(t) + ẽ(t). (52)

Using (23) and the fact that orthogonal matrices distribute
over the cross product results in

V̇ (R̃(t)) = 2q̃T (t) (ã(t) + ẽ(t))

= 2kaq̃
T (t)Nz R̂

T (t)
(
N âe(t)× Na

)
+2kw q̃

T (t)Nz R̂
T (t)N āN āT

(
N êe(t)× Ne

)
= 2kaq̃

T (t)J (zae(t)) R̃
T (t)zae(t)

+2kw q̃
T (t)R̃T (t)zā(t)zāT (t)R̃(t)(

J(zee(t))R̃
T (t)zee(t)

)
= 2kaq̃

T (t)J (zae(t)) R̃
T (t)zae(t)

+2kw q̃
T (t)PJ(zee(t))R̃

T (t)zee(t) (53)

where

P = R̃T (t)zā(t)zāT (t)R̃(t) (54)

is a projection matrix.
Substituting (13) into (53) yields

V̇ (R̃(t)) = 2kaq̃
T (t)J (zae(t))

zae(t)

−2γ̃(t)kaq̃
T (t)J (zae(t)) J(q̃(t))zae(t)

+2κ̃(t)kaq̃
T (t)J (zae(t)) J

2(q̃(t))zae(t)

+2kw q̃
T (t)PJ(zee(t))

(I − γ̃(t)J(q̃(t)) + κ̃J(q̃(t))) zee(t)

= −2kaγ̃(t)q̃T (t)J (zae(t)) J(q̃(t))zae(t)

+2kw q̃
T (t)PJ(z ēe(t))(

−γ̃(t)J(q̃(t)) + κ̃J2(q̃(t))
)
z ēe(t)

= −2kaγ̃(t)q̃T (t)J (zae(t)) J(q̃(t))zae(t)

+2kwκ̃(t)q̃T (t)PJ(zee(t))J
2(q̃(t))zee(t)

+2kwγ̃(t)q̃T (t)PJ(zee(t))J(zee(t))q̃(t).(55)

Using the fact that P 2 = P for projection matrices and
orthogonal matrices distribute over the cross product, (55)
becomes

V̇ (R̃(t)) = −2kaγ̃(t)q̃T (t)JT (zae(t)) J(zae(t))q̃(t)

−2kwγ̃(t)q̃T (t)PTJT (P zee(t))J(P zee(t))P q̃(t)

+2kwκ̃(t)q̃T (t)PTJT (P zee(t))

J(P q̃(t))J(P zee(t))P q̃(t)

= −2kaγ̃(t)‖J (zae(t)) q̃(t)‖2

−2kwγ̃(t)‖J(P zee(t))P q̃(t)‖2. (56)

Hence, the time derivative of the Lyapunov function is
negative semidefinite and the adaptive identifier is locally
stable. Although additional arguments beyond the scope of
this paper are required to show convergence of the attitude
estimate, the numerical simulations show the attitude esti-
mate to converge to the true attitude.

8) Attitude Calculation: Calculate the N
i R̂(t) rotation:

N
i R̂(t) = N

z R̂(t)ziR(t). (57)



Roll (φ(t)), pitch (θ(t)), and heading (γ(t)) estimations can
be found by the usual formula

γ(t) = atan2
(
N
i R̂21(t),Ni R̂11(t)

)
θ(t) = atan2(−N

i R̂31(t),
N
i R̂11(t) cos(γ(t))− N

i R̂21(t) sin(γ(t))) (58)
φ(t) = atan2(Ni R̂13(t) sin(γ(t))− N

i R̂23(t) cos(γ(t)),

−N
i R̂12(t) sin(γ(t)) + N

i R̂22(t) cos(γ(t))).

B. Adaptive Identifier for Local Level

If the Ẽ(t) term is removed from the update law in the
attitude adaptive identifier derived above, we get an adaptive
identifier for local level (roll and pitch). Its derivation follows
from the more general attitude adaptive identifier and results
in the following system.

1) Plant:
Nae(t) = N

z R
zae(t) (59)

2) Identification Plant:
N âe(t) = N

z R̂(t)zae(t) (60)

3) Output Error:

ã(t) = ka
N
z R̂

T (t)
(
N âe(t)× Na

)
(61)

4) System:

˙̃R(t) = R̃(t)Ã(t) (62)

5) Stability:

V (R̃(t)) = ‖R̃(t)‖2SO(3) (63)

V̇ (R̃(t)) = −2kaγ̃(t)‖J (zae(t)) q̃(t)‖2 (64)

Additional arguments beyond the scope of this paper are
required to show convergence of the estimate.

IV. NUMERICAL SIMULATIONS

The performance of the attitude adaptive identifier was
evaluated with numerical simulations. Section IV-A presents
the simulation setup and Section IV-B reports the simulation
results.

A. Simulation Setup

Three numerical simulations were implemented using two
datasets. Both datasets were sampled at 5 kHz for 15 minutes
and experienced the same instrument rotations. However, the
first dataset, DATA1, was without sensor noise while the
second dataset, DATA2, included sensor noise representative
of the KVH 1775 IMU (used iam(t) and iwm(t) instead of
iae(t) and iwe(t)).

All three simulations use gains of ka = 1 and kw = 0.05.
The NONOISE simulation implements the attitude adaptive
identifier on the DATA1 dataset while NOISE implements
the identifier on the DATA2 dataset. The third simulation,
NOISEFILT, implements the identifier on the DATA2 dataset
with a lowpass first order Butterworth filter (fcutoff = 0.005
Hz) on the N êe(t) signal.
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Fig. 3. NOISEFILT attitude estimate error.

B. Simulation Results

The attitude estimations for the three simulations are
shown in Figure 1 and their corresponding errors in Figure
2. The simulation results show that the NONOISE case
converges. However, the numerical differentiation of the
acceleration signal introduces noise to the system which can
be seen in Figure 2. In the NOISE simulation, the heading
estimate does not converge during the 15 minute simulation.
The authors believe this is because the signal to noise ratio is
low due to the differentiation of the noisy acceleration signal.
Hence for the NOISEFILT simulation, the N êe(t) signal
was put through the lowpass Butterworth filter. As shown
in Figure 2, the NOISEFILT attitude estimation converges to
the true value. Figure 3 shows that the heading estimation is
within 0.3◦ and the roll and pitch are within 0.01◦ of the true
values after 15 minutes of running the adaptive identifier.

V. CONCLUSION

This paper reports a novel stable adaptive attitude estima-
tor and preliminary simulation evaluations based on the noise
characteristics of the commercially available low-cost KVH
1775 IMU’s data-sheet. The simulation results of a rotating
system employing a low-cost FOG IMU indicates that the
algorithm can successfully find true-North if the sensor bias
offsets have accurately been compensated. Overall, these data
suggest the convergence of the adaptive identifier’s attitude
estimate to the true attitude for the case of a rotating IMU
configuration. In future studies, we hope to experimentally
evaluate the adaptive identifier, develop real-time 6-degrees
of freedom (DOF) IMU bias estimation, and address the
general-use-case of the simultaneously rotating and trans-
lating instrument configuration.
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