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Abstract— Six-degree of freedom (DOF) inertial measure-
ment units (IMUs) are widely used for attitude estimation.
However, such systems’ accuracy is limited by the accuracy
of calibration of bias, scale factors, and non-orthogonality of
sensor measurements. This paper reports a stable adaptive
estimator of measurement bias in six-DOF IMUs and prelim-
inary simulation results employing a commercially available
IMU comprising a 3-axis fiber optic gyroscope (FOG) with a 3-
axis micro-electro-mechanical systems (MEMS) accelerometer.
A stability proof of the adaptive estimator and preliminary
numerical simulation results are reported. The simulation
results for a rotating IMU configuration are promising, and
further experimental evaluation and extension of the algorithm
for the case of a translating IMU configuration typically found
on moving robotic vehicles are needed.

I. INTRODUCTION

Six-degree of freedom (DOF) inertial measurement units
(IMUs) are frequently used in many applications including
robotics, vehicle navigation systems, and smart-phones. Six-
DOF IMUs are comprised of a 3-axis angular-rate gyroscope
and a 3-axis linear accelerometer. Angular-rate gyroscopes
measure the angular rotation rate of the instrument, while
linear accelerometers measure linear acceleration and are
often used to measure the device’s local level (roll and pitch)
with respect to the Earth’s local gravity vector.

In addition, six-DOF IMUs are commonly used in attitude
estimation systems (eg. [5], [6], [14], [15], [3], [24], [23]).
However, these systems’ accuracies are affected by biases,
scale factors, and non-orthogonality of their sensor measure-
ments. Thus, calibration of these parameters (angular-rate
and linear acceleration sensor biases) of six-DOF IMUs is
critical for accurate attitude estimation.

A. Literature Review

Several methods for IMU measurement bias estimation
have been reported in recent years. However, majority of
this literature focuses on magnetometer bias estimation (eg.
[2], [1], [4], [7], [9], [11], [13]). In contrast, the present
paper addresses angular-rate and linear acceleration sensor
bias identification.

Metni et al. and Pflimlin et al. report nonlinear comple-
mentary filters for estimating attitude and gyroscope sensor
bias ( [16], [17], [19]). While these estimators identify
angular-rate sensor bias, they do not address linear accel-
eration sensor bias.
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Fig. 1. The star frame (s), Earth frame (e), and NED frame (N ). we is
the Earth’s angular velocity with a magnitude of ∼ +15◦/hr.

In [8], George and Sukkarieh report an identifier for
accelerometer and gyroscope sensor bias. However, they
utilize global positioning system (GPS) which is unsuitable
for robotic vehicles operating in GPS-denied environments
(eg. submerged vehicles).

Scandaroli et al. and Scandaroli and Morin ( [22], [21])
also report a sensor bias estimator for 6-DOF IMUs utilizing
computer vision. This method though is dependent on the
presence of a vision system, which requires identification
markers and a camera system which may not be available
for a robotic vehicle (eg. underwater vehicles).

B. Paper’s Contribution

The present paper reports (to the best knowledge of the
authors) the first stable adaptive algorithm for estimating
measurement bias of a dynamic (rotating) six-DOF IMU
along with preliminary simulation results of the identifier.

This paper is organized as follows: Section II gives an
overview of preliminaries. Section III reports the adaptive
measurement bias identifier. Section IV presents numerical
simulations. Section V summarizes and concludes.

II. PRELIMINARIES

A. Coordinate Frames

We define the following coordinate frames:
Star Frame: The star frame (s) has its origin at the center

of the Earth, with its axes fixed (non-rotating) with



respect to the stars, and with its z-axis aligned with the
Earth’s axis of rotation. For the purpose of this analysis
the star frame can be considered an inertial reference
frame.

Earth Frame: The Earth Frame (e) has its origin at the
center of the Earth, and with its z-axis aligned with the
Earth’s axis of rotation. The Earth frame rotates with
respect to the star frame about their coincident z-axis
at the Earth’s rotation of ∼ +15◦ per hour.

Instrument Frame: A frame (i) fixed in the IMU instru-
ment.

North-East-Down (NED) Frame: The NED frame (N )
has its x-axis pointing North, its y-axis pointing East,
its z-axis pointing down, and its origin co-located with
that of the instrument frame.

B. Notation and Definitions

For vectors, a leading superscript indicates the frame
of reference and a following subscript indicates the signal
source, thus Nwm is the measured instrument angular veloc-
ity in the NED frame and iam is the measured instrument
linear acceleration in the instrument sensor frame.

Definition: The set of 3×3 rotation matrices forms a group,
known as the special orthogonal group, SO(3), defined as

SO(3) = {R : R ∈ R3×3, RTR = I3×3,det(R) = 1}. (1)

For rotation matrices a leading superscript and subscript
indicates the frames of reference. For example, N

i R is the
rotation from the instrument frame to the NED frame.

The elements of a vector x ∈ R3 are defined with the
usual subscripts,

x =

x1x2
x3

 . (2)

Definition: The set of 3×3 skew-symmetric matrices is

so(3) = {S : S ∈ R3×3, ST = −S}. (3)

Definition: J is a function that maps a 3×1 vector to the
corresponding 3×3 skew-symmetric matrix, J : R3 → so(3).
For any k ∈ R3

J(k) =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 . (4)

We define its inverse J−1 : so(3)→ R3, such that ∀x ∈ R3,
J−1(J(x)) = x.

Definition: The Euclidean vector norm is defined as usual
as: ∀x(t) ∈ R3

‖x(t)‖ =
(
xT (t)x(t)

)1/2
. (5)

Definition [10]: A function V (x) is said to be radially
unbounded if

V (x)→∞ as ‖x‖ → ∞. (6)

C. Sensor Model
The sensor data is modeled as

iwm(t) = iwE(t) + iwv(t) + iwb + iηw(t) (7)
iam(t) = iag(t) + iav(t) + iab + iηa(t) (8)
iwe(t) = iwE(t) + iwv(t) + iwb (9)
iae(t) = iag(t) + iav(t) + iab (10)

where iwm(t) is the IMU measured angular-rate, iwe(t) is
the expected angular-rate, iwE(t) is the true angular velocity
due to the rotation of the Earth, iwv(t) is the true angular
velocity due to the rotation of the instrument with respect to
the NED frame, iwb is the angular velocity sensor bias offset,
iηw(t) is the zero-mean Gaussian angular velocity sensor
noise, iam(t) is the IMU measured linear acceleration, iae(t)
is the expected linear acceleration, iag(t) is the true linear
acceleration due to gravity and the Earth’s rotation, iav(t)
is the instrument’s true linear acceleration with respect to
Earth, iab is the linear accelerometer sensor bias, and iηa(t)
is the zero-mean Gaussian linear accelerometer sensor noise.

For this paper, we assume that the instrument is rotating
with respect to the NED frame (iav(t) = 0). For robotic ve-
hicles with small peak vehicle accelerations and a zero mean
vehicle acceleration over time (eg. underwater vehicles), the
acceleration due to gravity is the dominating signal in the
acceleration measurement. For this reason, we are ignoring
vehicle acceleration (since this formulation is applicable to
slowly accelerating vehicles) but are conducting continuing
research to extend our algorithm to the accelerating vehicle
case. With the zero vehicle acceleration assumption, the
sensor data model simplifies to

iwm(t) = iwE(t) + iwv(t) + iwb + iηw(t) (11)
iam(t) = iag(t) + iab + iηa(t) (12)
iwe(t) = iwE(t) + iwv(t) + iwb (13)
iae(t) = iag(t) + iab. (14)

III. AN ADAPTIVE MEASUREMENT BIAS IDENTIFIER

This section reports a novel adaptive bias identifier (6-
DOF IMU angular rate and linear acceleration biases) based
upon the adaptive estimation of measurement bias in 3-DOF
field sensors reported by Troni and Whitcomb in [25].

A. System Model
We consider the system model

s
NR(t)Nag = s

iR(t)
(
iae(t)− iab

)
. (15)

Differentiating (15), yields,
s
NR(t)J

(
NwE

)
Nag = s

iR(t)J
(
iwe(t)− iwb

) (
iae(t)− iab

)
+s

iR(t)iȧe(t). (16)

Rearranging terms in (16) yields,
iȧe(t) = N

i R
T (t)J(NwE)Nag

−J
(
iwe(t)− iwb

) (
iae(t)− iab

)
= N

i R
T (t)J

(
NwE

)
Nag − J

(
iwe(t)

)
iae(t)

+J
(
iwe(t)

)
iab − J

(
iae(t)

)
iwb − iz (17)
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Fig. 2. Simulation dataset attitude.

where iz is the constant iz = J
(
iwb

)
iab.

B. Adaptive Identifier

We consider the identifier system model

i ˙̂ae = N
i R

T (t)J
(
NwE

)
Nag − J

(
iwe(t)

)
iae(t)

+J
(
iwe(t)

)
iâb(t)− J

(
iae(t)

)
iŵb(t)

−iẑ(t)− k1∆a(t) (18)
i ˙̂wb(t) = −k2J

(
iae(t)

)
∆a(t) (19)

i ˙̂ab(t) = k3J
(
iwe(t)

)
∆a(t) (20)

i ˙̂z(t) = k4∆a(t) (21)

where the estimation errors are defined as

∆a(t) = iâe(t)− iag(t) (22)
∆wb(t) = iŵb(t)− iwb (23)
∆ab(t) = iâb(t)− iab (24)
∆z(t) = iẑ(t)− iz. (25)

Note that the attitude (rotation matrix N
i R(t)) is needed for

the algorithm.

C. Error System

The error system is

∆ȧ(t) = J
(
iwe(t)

)
∆ab(t)− J

(
iae(t)

)
∆wb(t)

−∆z(t)− k1∆a(t) (26)
∆ẇb(t) = −k2J

(
iae(t)

)
∆a(t) (27)

∆ȧb(t) = k3J
(
iwe(t)

)
∆a(t) (28)

∆ż(t) = k4∆a(t). (29)

D. Stability

Consider the Lyapunov candidate function

V =
1

2
‖∆a(t)‖2 +

1

2k2
‖∆wb(t)‖2

+
1

2k3
‖∆ab(t)‖2 +

1

2k4
‖∆z(t)‖2. (30)

Taking the time derivative and substituting in (26) - (29)
yields

V̇ = ∆aT (t)∆̇a(t) +
1

k2
∆̇w

T

b (t)∆wb(t)

+
1

k3
∆̇a

T

b (t)∆ab(t) +
1

k4
∆̇z

T
(t)∆z(t)

= −k1∆aT (t)∆a(t)

+
(
−∆aT (t)J

(
iae(t)

)
+ ∆aT (t)J

(
iae(t)

))
∆wb(t)

+
(
∆aT (t)J

(
iwe(t)

)
−∆aT (t)J

(
iwe(t)

))
∆ab(t)

+
(
∆aT (t)−∆aT (t)

)
∆z(t)

= −k1‖∆a(t)‖2. (31)

Since the Lyapunov function is radially unbounded and
its time derivative is negative semidefinite, the adap-
tive identifier is globally stable. In addition, because
V̇ = −k1‖∆a(t)‖2, the state ∆a(t) converges asymp-
totically to zero while the other states, ∆wb(t), ∆ab(t),
and ∆z(t), are stable. Additional arguments beyond the
scope of this paper and persistent excitation (PE) conditions
are needed for global asymptotic stability of the adaptive
identifier [18], [20].

IV. NUMERICAL SIMULATIONS

The performance of the measurement bias adaptive identi-
fier was evaluated with numerical simulations. Section IV-A
presents the simulation setup and Section IV-B reports the
simulation results.

A. Simulation Setup

• Two numerical simulations (TRUEATT and MAGATT)
were implemented using one generated dataset.

• The dataset was sampled at 5kHz for 45 minutes
and included sensor noise and sensor bias repre-
sentative of the KVH 1775 IMU (KVH Industries,
Inc., Middletown, RI, USA). Angular velocity sen-
sor and linear accelerometer sensor noises were com-
puted from the IMU manufacturer’s specifications [12],
as per [26], and sensor biases are chosen to be in
line with the KVH datasheet ( σw = 6.32 × 10−3

rads/s, σa = 0.0037 g, iab =
[

1 2 −2
]T
/103, and

iwb =
[
−2 1 −1

]T
/105 ). These noise and bias char-

acteristics are on par with ones we have observed
experimentally while using the 1775 IMU.

• The simulated IMU is mounted to a vehicle. If we define
a vehicle frame to be such that the x-axis is pointing
forward, the y-axis is pointing starboard, and the z-
axis is pointing down, the IMU is mounted such that
its coordinate frame’s origin is co-aligned with that of
the vehicle and rotated by 45◦ around the x-axis (roll).
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Fig. 3. TRUEATT simulation ŵb(t) estimate.
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Fig. 4. TRUEATT simulation ŵb(t) estimates’ error.
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Fig. 5. TRUEATT simulation âb(t) estimate.
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Fig. 6. TRUEATT simulation âb(t) estimates’ error.

• During the simulation, the instrument
experiences a sinusoidal angular velocity of
iwv(t) =

[
0 − cos(t/5)/20 − cos(t/5)/20

]T
which

results in the vehicle heading shown Figure 2.

B. Simulations

Both simulations use adaptive identifier gains of k1 = 1,
k2 = 0.01, k3 = 2, and k4 = 0.000001.

1) TRUEATT Simulation: The TRUEATT simulation im-
plements the bias adaptive identifier using the true attitude
(roll, pitch, heading) for calculating the N

i R(t) matrix.
2) MAGATT Simulation: The MAGATT implements the

bias adaptive identifier using corrupted heading measure-
ments (3◦ heading bias) for calculating the N

i R(t) matrix.
Accelerometers can be used to find local level (roll and pitch)
to within a fraction of a degree, so for this study we focused
on the affect of heading error from magnetometers, which
is commonly around 3◦, on the 6-DOF IMU sensor bias
identifier.

C. Results

1) TRUEATT Simulation: The angular rate bias estima-
tion and errors for the TRUEATT simulation are shown in
Figures 3 and 4, respectively, while the linear acceleration
bias estimation and errors for the TRUEATT simulation are
shown in Figures 5 and 6, respectively. The simulation results
show that with an accurate knowledge of the N

i R(t) matrix
and the IMU experiencing PE, the bias estimates converge
to their true values within the 45 minutes of the simulation.

2) MAGATT Simulation: The angular rate bias estimation
and errors for the MAGATT simulation are shown in Figures
7 and 8, respectively, while the linear acceleration bias
estimation and errors for the MAGATT simulation are shown
in Figures 9 and 10, respectively. The simulation results
show that with a knowledge of the N

i R(t) matrix and the
IMU experiencing PE, the linear acceleration bias estimate
converges to its true values within the 45 minutes of the
simulation, while the angular rate bias estimate converges to
a value close to the true sensor bias but with a small offset
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Fig. 7. MAGATT simulation ŵb(t) estimate.
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Fig. 8. MAGATT simulation ŵb(t) estimates’ error.

0 500 1000 1500 2000 2500
-5

-4

-3

-2

-1

0

1

2

3

4

5
10 -3

a
x

a
y

a
z

Fig. 9. MAGATT simulation âb(t) estimate.
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Fig. 10. MAGATT simulation âb(t) estimates’ error.

due to the inaccurate heading measurement (3◦ error).

V. CONCLUSION

This paper reports a novel stable adaptive 6-DOF IMU
measurement bias estimator and preliminary simulation eval-
uations based on the measurement noise model of the
commercially available KVH 1775 IMU data-sheet. The
simulation results of a rotating system employing a fiber
optic gyroscope (FOG) IMU indicates that algorithm can
successfully estimate measurement bias if the attitude (roll,
pitch, heading) is known to create the N

i R(t) matrix. Overall,
these data suggest the convergence of the adaptive identifier’s
bias estimates to their true values for the case of a persistently
rotating IMU and knowledge of the instruments attitude.

In future research, we will experimentally evaluate the
adaptive identifier and address the general use-case of the
simultaneously rotating and translating instrument configu-
ration.
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